If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+13=99
We move all terms to the left:
7x^2+13-(99)=0
We add all the numbers together, and all the variables
7x^2-86=0
a = 7; b = 0; c = -86;
Δ = b2-4ac
Δ = 02-4·7·(-86)
Δ = 2408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2408}=\sqrt{4*602}=\sqrt{4}*\sqrt{602}=2\sqrt{602}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{602}}{2*7}=\frac{0-2\sqrt{602}}{14} =-\frac{2\sqrt{602}}{14} =-\frac{\sqrt{602}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{602}}{2*7}=\frac{0+2\sqrt{602}}{14} =\frac{2\sqrt{602}}{14} =\frac{\sqrt{602}}{7} $
| 2.2m=44 | | 2(y-4)=-4(y+8 | | 12e+24=32+24e | | (9-x)*(x+17)=0 | | 6(x-8)=36 | | 2f-10=2f+2 | | 47y=0 | | -x-10=-60 | | 2f-6=5f+3-3f | | 5(n+5)=45 | | 5x=3x=+(x+2) | | y-58=7.8 | | 17c+28c=45 | | -2k-4k=24 | | 0.3(2t+8)-1.8=0.4(t-8) | | (9-x)*(x+10)=0 | | 7(x-8)+20=5(x-6) | | |3x-6|-7=14 | | 42+2x=164 | | 5=8+3(2x-1) | | 0.5r=17.5 | | 1/2x-24=95 | | 5x-8=20+3x | | 243^3-p=3^p-3 | | -7n+2n=-10 | | -5(-3x+1)-3x-2=-31 | | 3.5x+3=32 | | 10e+18=22+11e | | (3^2X)(9^x-1)=27 | | -2x+5x=9 | | 84=15x-8x | | 5y=54-y |